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Some genes produce transcripts that function directly in regulatory, catalytic, or

structural roles in the cell. These non-coding RNAs are prevalent in all living
organisms, and methods that aid the understanding of their functional roles are

essential. RNA secondary structure, the pattern of base-pairing, contains the crit-

ical information for determining the three dimensional structure and function of
the molecule. In this work we examine whether the basic geometric and topological

properties of secondary structure are sufficient to distinguish between RNA families

in a learning framework. First, we augment the dual graph representation of RNA
secondary structure proposed by [1] with biologically meaningful labels. We define

a similarity measure directly on these graph objects using the recently developed

marginalized kernels of [2]. Using this learning method, we trained Support Vector
Machine classifiers to distinguish known RNA families from random RNAs. For

22 of the 25 families tested, the classifier achieved better than 70% accuracy, with

much higher accuracy rates for some families. A one vs. all multi-class scheme also
showed limited success. From these initial learning experiments, we suggest that
the labeled dual graph representation, together with kernel machine methods, has
potential for use in automated classification of uncharacterized RNA molecules or
efficient genome-wide screens for RNA molecules from existing families.

1. Introduction

Non-coding RNA (ncRNA) molecules are those RNAs that do not encode
proteins, but instead serve some other function in the cell [3]. They play a
variety of critical roles [4] and are ubiquitous in all kingdoms of life. RNA
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function is uniquely determined by the three dimensional structure of the
molecule. To reach its functional form, a single stranded RNA molecule
folds back on itself – driven by GC/AU/GU base-pairing and stacking in-
teractions – to form short helices and various single stranded loop regions
that define its secondary structure [5]. Some RNAs require metals or pro-
teins to chaperone the folding process, but for the most part, the final three
dimensional structure, and hence the functional role, is fully determined by
the secondary structure [6]. This suggests that development of computa-
tional tools based on RNA secondary structure is essential for discovery
and classification of new non-coding RNAs.

A variety of computational methods have used the secondary struc-
ture of RNA molecules to search and categorize ncRNAs, but many of
these methods are limited in their use of secondary structure. Regular-
expression-like pattern matching algorithms have been used to scan genome
sequences for regions that fold into the canonical structures of specific fami-
lies [7]. However, they are designed to stringent configurations of secondary
structure elements, and therefore perform poorly on families with varia-
tions in folding. Pair Stochastic Context Free Grammars (P-SCFG) look
for evidence of secondary structure conservation by modeling covariance
of mutations from related genomes [8] – but determining an approrpriate
grammar is a non-trivial problem [9] Some discriminative classifiers use
secondary structure stability as an input feature to distinguish non-coding
RNAs from intergenic sequence [10], but they ignore important topological
information. On the other hand, methods that use computable representa-
tions of secondary structure, such as trees and graphs, have been restricted
to categorization and enumeration of gross topological features [11, 1].

Here we present a kernel-based machine learning method for classify-
ing RNA families that avoids some of these limitations by learning directly
from a graphical representation of secondary structure. This discrimina-
tive method does not require the adaptation of any parameters or training
of cumbersome generative models, yet it captures some of the topological
relationships of RNA secondary structures. First, we define an appropri-
ate representation of RNA secondary structure by extending the RNA dual
graph [1] representation with a biologically relevant labeling scheme. Sec-
ond, we define a similarity measure between RNA secondary structures
by applying a recently developed marginalized kernel [2] to compare RNA
molecules encoded as labeled dual graphs. Third, we test the usefulness of
this representation for learning the topological characteristics of RNA sec-
ondary structure by training Support Vector Machines [12] on appropriate
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datasets.

2. An Algorithm for Classification Based on Secondary
Structure Topology

Classification of RNA secondary structures with Support Vector Machines
(SVM) requires both a representation that captures the secondary structure
and a kernel function that provides a reasonable similarity measure for
the chosen representation. Below we describe a graph representation that
captures some topological properties of the secondary structure of RNAs, as
well as a method for applying kernel functions to the graph representations.

2.1. Labeled Dual Graphs

Given a secondary structure of an RNA molecule, we want to construct
a graph that captures essential properties of the structure. We begin by
converting the RNA secondary structure to a dual graph [1]. In this rep-
resentation, helical regions of the RNA are represented as vertices of the
graph, while single RNA strands that connect the helical regions are edges.
Thus, internal loops, bulges, and multi-loops become edges that connect
vertices (helices adjacent to the loops), and external loops become edges
from a vertex to itself.

We then augment the graph representation by adding labels that corre-
spond to the length and type of secondary structure elements. The resulting
labeled dual graphs (LDGs) are comprised of vertices labeled according to
the number of nucleotide-pairs in the helical region they represent, and
edges labeled according to the length (in number of nucleotides) and type
(internal/external) of the loop they represent. See Figure 1 for an illustra-
tion of labeled dual graphs.

2.2. Marginalized Kernels for Labeled Dual Graphs

In order to use an SVM classifier on graph objects, we need a kernel func-
tion to define a similarity between two labeled dual graphs. Several kernels
for graph objects have been proposed [13, 2]; here we use the recently devel-
oped marginalized kernel for labeled graphs [2] because it is relatively simple
to implement, computationally efficient, and yielded promising results. In-
tuitively, this kernel function computes a similarity measure between two
arbitrary labeled graphs by comparing the label sequences produced by
taking random walks on each of the two graphs; the more similar the sets
of label sequences, the higher the similarity score for the pair of graphs.
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Figure 1. A. Secondary structure diagram and labeled dual graph representation of
5S rRNA (left) and tRNA (right) molecules. The numbers and ordered pairs are the

vertex (helix) and edge (loop) labels, respectively. The labels E and I are used to

distinguish external from internal loops. B. A subset of label sequences generated by
taking random walks on the two graphs. Here L refers to the length of the path. C. An
example of the label sequence kernel and its output, as it is applied to a pair of label

sequences. We consider the two paths with L = 3.
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The computation of the kernel function between two graphs G and G′

proceeds as follows. First, generate a random walk h on graph G and a
walk h′ on graph G′, according to some defined probability of transitioning
from vertex to vertex. Each walk produces a sequence of vertex and edge
labels, z = {v1, e12, v2, e23, v3, . . .} and z′ = {v′

1, e
′
12, v

′
2, e

′
23, v

′
3, . . .}. Next,

define the label sequence kernel Kz(z, z′) as the product of the vertex label
kernels Kv(v, v′) and the edge label kernels Ke(e, e′) over the sequence of
labels,

Kz(z, z′) = Kv(v1, v
′
1)Ke(e12, e

′
12)Kv(v2, v

′
2) . . . . (1)

If the two walks are of different lengths, we assume the label sequence
kernel is 0. Now that a similarity measure Kz(z, z′) is defined for each pair
of walks, the value of the full graph kernel K(G, G′) is computed as the
expected value of Kz(z, z′) over all possible walks h and h′, weighted by
the probability of generating the walks,

K(G, G′) = 〈Kz(z, z′)〉h,h′ . (2)

The probability of taking a random walk on a graph, p(h, h′) depends on the
probability of starting at a particular vertex and transitioning to subsequent
vertices. We assumed a uniform starting probability over all vertices, a
uniform probability of transitioning from a vertex to one of its neighbors,
and a constant probability (0.1) of terminating the walk after any step.

Finally, we need to specify the edge and the vertex kernel functions,
Ke(., .), Kv(., .). These should reflect the similarities in RNA structural
motifs – similar helices should produce high similarity scores, as should
comparable loops. The choice of biophysical parameters that can serve as
the basis for similarity comparisons is large – base composition, sequence or
structural alignment, feature lengths, among others. As a first step we chose
edge and vertex kernels that reflect the most basic structural parameters:
the number of nucleotides that comprise a secondary structure motif. The
vertices and edges of the dual graphs are labeled with these distances, and
the vertex and edge kernels are defined as the Gaussian distance on the
log-ratio of the two labels (lengths). The vertex kernel is thus defined as

Kv(vi, vj) = exp(−λ2
ij) , (3)

where λij = log(vi/vj). For two edges of the same type of loop (internal or
external), the edge kernel is similarly defined,

Ke(eij , ekl) = exp(−λ2
ij,kl) , (4)
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and for edges of different types, the edge kernel is 0. See Figure 1b for an
illustrative example.

Effectively, two labeled dual graphs are considered similar when the
two sets of all possible walks on each graph are similar. The similarity
between individual walks is calculated as a product of simple functions
defined on their constituent labels. Thus, if all the vertex and edge labels
in the two walks match up, the output of the kernel function on the two
walks will be high; and if many of the walks on the two graphs are similar,
the kernel function will return a high value (with maxK(G, G′) = 1) for
the two graph objects. Hence this computation captures some topological
relationships between structural elements of RNA secondary structure.

3. Methods

We performed two sets of experiments to test the ability of the classifier
to learn RNA secondary structure and predict RNA family labels. First
we trained SVM classifiers to distinguish non-coding RNAs from random
RNAs with similar di-nucleotide composition. We also trained a system of
multi-class SVMs to determine the family RNA sequences.

Single family classification was tested on a number of RNA families from
the RFAM database [14] (see the Results section for the list of tested RFAM
families). When possible, we trained and tested the classifier on 500 RNA
sequences, randomly selected from all RNAs in the family. However, some
RFAM families contained fewer sequences, in which case all were used for
classification. The negative data set was constructed by shuffling the nu-
cleotide sequences of the positive data set while preserving the di-nucleotide
frequencies [15], which destroys characteristic secondary structure but pro-
duces random RNAs with sequence statistics similar to real RNA.

RNA sequences were converted to secondary structures with the Vienna
RNA [16] folding prediction package, then converted to labeled dual graphs
as described above. We implemented the kernel computation using an
iterative method described in [2]; one thousand kernel computations took
between 2 and 40 seconds on a desktop machine (2GHz Athlon), depending
on the average complexity of the secondary structure. SVM classification
was performed with 10 fold cross validation, with the precision parameter
set to 10000. We assessed classifier performance with sensitivity (TP/(TP+
FN)) and specificity (TN/(TN+FP )) measures and by computing the area
under ROC curves (AROC) [17].

We also trained a multiclass classifier on nine large RFAM families us-
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ing the one vs. all method, a simple and common approach to multiclass
classification [18]. A separate classifier was trained to distinguish each
family from the other eight. During classification, an RNA sequence was
tested against each of the nine classifiers, and a family label was assigned
according to the classifier that produced the highest decision value. A num-
ber of related families with few RNA sequences were grouped together for
training and analysis (see Results for details). Performance was assessed
with the generalized class precision and class recall measures [19]. For each
classifier, the class sensitivity (QD) represents the percentage of samples
correctly predicted relative to the total number of samples in that family,
while the class specificity (QM ) captures the number of samples correctly
predicted relative to the total number of samples predicted to be in that
family.

4. Results

4.1. Single Family SVM

Figure 2 shows the results of SVM classifiers trained on datasets derived
from individual RFAM families. For sufficient training data we used families
with 50 or more sequences. The generation of negative training data is
described in the previous section. The classifiers showed good performance
for a large number of families, with AROC > 0.7 for 22 of 25 families
tested. This suggests that the learning method is useful for learning a
variety of secondary structure topologies. A notable result is the good
classifier performance on several riboswitch and microRNA families, two
particularly exciting non-coding RNA classes that have recently been shown
to be involved in novel mechanisms for regulating gene expression.

4.2. Multi-class SVM

Table 1 shows the cross validation results of the one vs. all multi-class
SVM trained on nine RFAM families. The MICRO and RNASE groups
represent aggregates of functionally related individual RFAM families (see
the caption for details). Again, classifier sensitivity and specificity were
good over a range of families, although specificity clearly degraded for RNA
families with larger molecules and possibly more complicated secondary
structures. In these instances, it is possible that shorter walks pick up
spurious similarities.
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U4 [170] 0.62 59.8 58.5

7SK [175] 0.68 59.9 63.6

U1 [250] 0.68 68.4 59.2

5_8S_rRNA [500] 0.73 66.1 67.7

U7 [180] 0.79 69.4 71.7

tmRNA [110] 0.79 74.5 65.5

SECIS [80] 0.79 72.8 73.4

U5 [95] 0.80 72.6 69.5

RRE [65] 0.83 76.9 80.0

U2 [210] 0.83 77.9 73.9

5S_rRNA [500] 0.84 79.3 73.5

U6 [500] 0.85 82.1 72.4

Histone3 [125] 0.87 86.6 91.9

SRP_euk_arch [75] 0.87 82.4 72.4

Cobalamin [155] 0.87 77.3 73.1

tRNA [500] 0.89 82.6 81.4

Y [500] 0.89 82.9 80.3

Intron_gpI [500] 0.90 87.5 76.7

THI [200] 0.91 84.5 78.5

T−box [200] 0.91 89.1 77.3

RFN [65] 0.93 84.6 80.0

S_box [85] 0.94 85.9 88.2

Intron_gpII [500] 0.94 92.2 86.3

SSU_rRNA_5 [500] 0.95 92.2 81.9

SRP_bact [85] 0.96 88.4 89.3

RNaseP_bact_a [225] 0.99 98.7 92.4

Family [#seqs] ROC area under curve Sensitivity Specificity

1.00.0

Figure 2. Performance of SVM classifiers trained on single RFAM families vs. shuffled
sequences with the same di-nucleotide composition. Area under the ROC curve (AROC)
is computed as the mean of the areas for each ROC curve of the 10 cross validation trials;

error bars are standard deviation of AROC .

5. Discussion

The method presented here was able to learn to distinguish a number of
non-coding RNA families; however, it is worth highlighting a few factors
that may have adversely impacted its performance. First, the algorithm
relies on predicted secondary structures as input, and is therefore sensitive
to incorrectly predicted structures. As an example, training and testing
a classifier on tRNAs for which correct folding was manually verified in-
creased the accuracy from 89% to 98%. On the other hand, because the
kernel computation considers local paths over the entire structures, parts
of the molecule that are correctly folded will still contribute to the correct
computation of the kernel, even if some parts of the molecule are mis-folded.
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Table 1. Contingency table showing results for 10 fold cross validation of one vs. all

multi-class SVM. For each RNA family (table row), the number of RNAs classified as

a certain family appears in the respective column. QD and QM refer to generalized
sensitivity and specificity, respectively. If zij is an element in the contingency table,

then QD
i = ziiP

j zij
and QM

i = ziiP
j zji

. Several functionally related small RFAM fam-

ilies were grouped together to form aggregate families, MICRO: let-7, lin-4, mir-1,
mir-10, mir-101, mir-103, mir-124, mir-130, mir-135, mir-148, mir-156, mir-16, mir-160,

mir-166, mir-17, mir-181, mir-19, mir-192, mir-194, mir-196, mir-199, mir-2, mir-218,

mir-219, mir-24, mir-26, mir-29, mir-30, mir-46, mir-6, mir-7, mir-8, mir-9; and
RNASE: RNaseP bact a, RNaseP bact b, RNaseP nuc, RNase MRP, and these were

trained and tested as single classes.
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Histone3 123 0 0 0 0 0 1 3 0 .97

Intron gpI 0 355 82 1 18 33 1 5 5 0.71
Intron gpII 0 27 443 0 5 7 6 9 3 0.89

MICRO 0 3 2 165 0 0 1 1 8 0.92
RNASE 0 26 5 1 251 52 0 3 3 0.74

SSU rRNA 0 17 0 0 5 474 0 1 3 0.95

tRNA 0 16 8 4 8 27 370 33 26 0.75
U6 0 17 4 0 4 25 10 409 31 0.82

Y 0 32 3 4 11 31 14 30 375 0.75

QM 1.0 0.72 0.81 0.94 0.83 0.73 0.92 0.83 0.83

More accurate folding algorithms should improve the performance of this
classifier. Also, existing secondary structure prediction algorithms are capa-
ble of predicting multiple suboptimal secondary structures. One possibility
for minimizing the effect of incorrectly predicted secondary structures is by
utilizing sets of dual graphs corresponding to these suboptimal structures.

As a representation of RNA secondary structure, the current formula-
tion of labeled dual graphs does lose some of the structural information:
the natural 5’-3’ directionality of the molecule, the lengths of free 5’ and
3’ strands, as well as more complex topological features such as chirality
or relative position of helical regions. Much of this information could be
included with natural extensions to the labeling scheme, together with ap-
propriate modifications to the kernel computation.

6. Conclusion

We have presented a novel, simple, and computationally efficient approach
for learning RNA secondary structures. It uses graph representations of
folded RNA structures and kernels defined on graph objects to train SVM
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classifiers. Applied to non-coding RNAs from the RFAM database, the
method gave promising results. It could distinguish many families from ran-
dom RNA sequences with identical di-nucleotide composition, and showed
some ability to differentiate one family from another. Because this concep-
tually simple approach produced relatively accurate classifiers, and because
no other automated discriminative method for classification or discovery of
ncRNAs exists, we believe there is great potential for extending this method
or combining it with other techniques. Specific applications could include
automated class-discovery of uncharacterized RNA molecules and compu-
tationally efficient heuristic filters in conjunction with other methods for
RNA family prediction.
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